Chemistry 1
 Volume 3

Worksheet 2

Calculating Ion Concentrations in Solutions

1. What is the concentration of lithium ions in a 1.45 M solution of $\mathrm{Li}_{3} \mathrm{PO}_{4}$?
2. What is the concentration of $\mathrm{NO}_{3}{ }^{-}$in a 0.65 M solution of barium nitrate?
3. When CaCl_{2} is dissolved in water, the resulting concentration of Cl^{-}is 0.15 M . What was the concentration of the original solution?
4. 1.00 L of a 0.25 M solution of CdCl_{2} was mixed with 1.00 L of a 0.10 M solution of LiCl . What is the concentration of cadmium, lithium, and chlorine ions in the mixed solution?
5. A solution was obtained by dissolving 1.1 g NaCl and $0.25 \mathrm{~g} \mathrm{MgCl}_{2}$ in 0.50 L of water. What is the concentration of Cl^{-}in the final solution?
6. What is $\left[\mathrm{OH}^{-}\right]$when 0.66 g NaOH is dissolved in 150 mL water?
7. NaCl and LiCl were dissolved in a solution, and the final $\left[\mathrm{Cl}^{-}\right]$is 0.15 M . If the original $[\mathrm{NaCl}]$ was 0.10 M , what was the original concentration of LiCl ?
8. How many moles of strontium chloride were used to create a 0.15 L solution where $\left[\mathrm{Cl}^{-}\right]=$ 0.88 M ?
9. A chemist wants a final solution of $0.16 \mathrm{M}^{[\mathrm{Br}}$] with a volume of 0.150 L created from a 0.55 M LiBr solution. What volume of the original solution should be diluted to obtain this concentration?
10. Challenge: What is the total ion concentration in a solution created by dissolving 0.55 g LiNO_{3} in 1.5 L water?

Answer Key

1. What is the concentration of lithium ions in a 1.45 M solution of $\mathrm{Li}_{3} \mathrm{PO}_{4}$?

Step 1:
Write the balanced equation for the dissolution:

$$
\mathrm{Li}_{3} \mathrm{PO}_{4}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathbf{l})} 3 \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})
$$

Step 2:
For every 1 mole of $\mathrm{Li}_{3} \mathrm{PO}_{4}, 3$ moles of $\mathrm{Li}+$ are formed. Use this as the conversion factor to calculate the Li^{+}concentration from the original solution molarity.

$1.45 \mathrm{molii}_{3} \mathrm{PQ}_{4}$	$3 \mathrm{~mol} \mathrm{Li}^{+}$	$=4.35 \mathrm{M} \mathrm{Li}^{+}$
1 L	$1 \mathrm{molil}_{3} \mathrm{PO}_{4}$	

Correct answer: $4.35 \mathrm{M} \mathrm{Li}^{+}$

2. What is the concentration of NO^{3-} in a 0.65 M solution of barium nitrate?

Step 1:

Write the balanced equation for this process:

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathbf{l})} \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Step 2:

Convert moles of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ into moles of $\mathrm{NO}_{3}{ }^{-}$using the conversion factor of 1 mole of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ for every 2 moles NO_{3}.

$0.65 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{z}$	$2 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-}$	$=1.3 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$
1 L	$1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{z}$	

Correct answer: $1.3 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$
3. When CaCl_{2} is dissolved in water, the resulting concentration of Cl^{-}is 0.15 M . What was the concentration of the original solution?

Step 1:
Write a balanced equation for this process:

$$
\mathrm{CaCl}_{2}(\mathrm{~s}) \xrightarrow{\mathbf{H}_{2} \mathbf{O}(\mathbf{l})} \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Step 2:
Convert [$\mathrm{Cl}-]$ to $\left[\mathrm{CaCl}_{2}\right]$ using the molar ratio from the equation above.

$0.15 \mathrm{molCl}^{-}$	$1 \mathrm{~mol} \mathrm{CaCl}_{2}$	$=0.075 \mathrm{M} \mathrm{CaCl}_{2}$ solution
1 L	$2 \mathrm{molCl}^{-}$	

Correct answer: $0.075 \mathrm{M} \mathrm{CaCl}_{2}$ solution

11. 1.00 L of a 0.25 M solution of CdCl_{2} was mixed with 1.00 L of a 0.10 M solution of LiCl . What is the concentration of cadmium, lithium, and chlorine ions in the mixed solution?

Step 1:

Write the balanced equations for the dissolution of each of the ionic compounds.

$$
\begin{gathered}
\mathrm{CdCl}_{2}(\mathrm{~s}) \xrightarrow{\mathbf{H}_{2} \mathrm{O}(\mathbf{l})} \mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{LiCl}(\mathrm{~s}) \xrightarrow{\mathbf{H}_{2} \mathbf{O}(\mathbf{l})} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{gathered}
$$

Step 2:

Use the molar ratio of the original ionic compounds to ions to calculate the concentration of the individual ions in their starting solution.
CdCl_{2} :

$0.25 \mathrm{~mol} \mathrm{CdCl}_{z}$	$1 \mathrm{~mol} \mathrm{Cd}^{2+}$	$=0.25 \mathrm{M} \mathrm{Cd}^{2+}$
1 L	$1 \mathrm{molCdCl}_{\mathrm{z}}$	

$0.25 \mathrm{molCdCl}_{z}$	$2 \mathrm{~mol} \mathrm{Cl}^{-}$	$=0.50 \mathrm{M} \mathrm{Cl}^{-}$
1 L	$1 \mathrm{molCdCl}_{z}$	

LiCl:

0.10 molticl	$1 \mathrm{~mol} \mathrm{Li}^{+}$	$=0.10 \mathrm{M} \mathrm{Li}^{+}$
1 L	1 moliCl	
0.10 mol Licl	1 mol Cl	$=0.10 \mathrm{M} \mathrm{Cl}^{-}$
1 L	1 molLiCl	

Since you have 1.00 L of each solution, the concentration of ions is also the number of moles of each ion:
$0.25 \mathrm{M} \mathrm{Cd}^{2+}=0.25 \mathrm{~mol} \mathrm{Cd}^{2+}$
$0.050 \mathrm{M} \mathrm{Cl}^{-}=0.050 \mathrm{~mol} \mathrm{Cl}^{-}$
$0.10 \mathrm{M} \mathrm{Li}^{+}=0.10 \mathrm{~mol} \mathrm{Li}^{+}$
$0.10 \mathrm{M} \mathrm{Cl}^{-}=0.10 \mathrm{~mol} \mathrm{Cl}^{-}$

Step 3:
Since there are two sources of Cl^{-}, add these together to get the total moles of Cl^{-}.
$\mathrm{Cl}^{-}=0.10 \mathrm{~mol}+0.50 \mathrm{~mol}=0.60 \mathrm{~mol} \mathrm{Cl}^{-}$

Step 4:
Divide each value of moles by the volume of the new solution (2.00 L).
$\left[\mathrm{Cl}^{-}\right]=\frac{0.60 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.30 \mathrm{M}$
$\left[\mathrm{Cd}^{2+}\right]=\frac{0.25 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.13 \mathrm{M}$
$\left[\mathrm{Li}^{+}\right]=\frac{0.10 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.050 \mathrm{M}$

Correct answers: $\left[\mathrm{Cl}^{-}\right]=0.30 \mathrm{M} ;\left[\mathrm{Cd}^{2+}\right]=0.13 \mathrm{M} ;\left[\mathrm{Li}^{+}\right]=0.050 \mathrm{M}$
4. A solution was obtained by dissolving 1.1 g NaCl and $0.25 \mathrm{~g} \mathrm{MgCl}_{2}$ in 0.50 L of water. What is the concentration of Cl^{-}in the final solution?

Step 1:
Write balanced equations for the processes:
$\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathbf{l})} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

$$
\mathrm{MgCl}_{2}(\mathrm{~s}) \xrightarrow{\mathbf{H}_{2} \mathrm{O}(\mathbf{l})} \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Step 2:

Use the masses and the molar masses of NaCl and MgCl_{2} to calculate moles of each and use the molar ratio

1.1 g NaCl	1 mol NaCl	$=0.019 \mathrm{~mol} \mathrm{NaCl}$
	58.44 g NaCl	
$0.25 \mathrm{~g} \mathrm{Mggl}_{z}$	$1 \mathrm{~mol} \mathrm{MgCl}_{2}$	$=0.0026 \mathrm{~mol} \mathrm{MgCl}_{2}$
	95.211 g MgCl	

Step 3:
Calculate the molarity of the original solutions.
Molarity $=\frac{0.019 \mathrm{~mol} \mathrm{NaCl}}{0.50 \mathrm{~L}}=0.038 \mathrm{M} \mathrm{NaCl}$

Molarity $=\frac{0.0026 \mathrm{~mol} \mathrm{MgCl}_{2}}{0.50 \mathrm{~L}}=0.0052 \mathrm{M} \mathrm{MgCl}_{2}$

Step 4:

Use the molar ratio from the balanced equations to calculate [Cl^{-}] from each salt.

0.038 mol NaCl	$1 \mathrm{~mol} \mathrm{Cl}^{-}$	$=0.038 \mathrm{M} \mathrm{Cl}^{-}$
1 L	$1 \mathrm{~mol} \mathrm{NaCl}^{2}$	

0.0052 mol MgCl	$2 \mathrm{~mol} \mathrm{Cl}^{-}$	$=0.010 \mathrm{M} \mathrm{Cl}^{-}$
1 L	$1 \mathrm{~mol} \mathrm{MgCl}_{z}$	

Add these two values together to get the total $\left[\mathrm{Cl}^{-}\right]$in the final solution.
Correct answer: [Cl^{-}] $=0.048 \mathrm{M}$
5. What is $\left[\mathrm{OH}^{-}\right]$when 0.66 g NaOH is dissolved in 150 mL water?

Step 1:
The balanced equation for this process is:
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathbf{O}(\mathbf{l})} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Step 2:
Calculate the moles of NaOH using the molar mass of $\mathrm{NaOH}(39.99 \mathrm{~g} / \mathrm{mol})$.

0.66 g NaOH	1 mol NaOH	$=0.017 \mathrm{~mol} \mathrm{NaOH}$
	39.99 NaOH	

Step 3:
Convert 150 mL to L and calculate the molarity of NaOH .

150 mt	1 L	$=0.15 \mathrm{~L}$
	$1,000 \mathrm{mt}$	

Molarity $=\frac{0.017 \mathrm{~mol} \mathrm{NaOH}}{0.15 \mathrm{~L}}=0.11 \mathrm{M}$

Step 4:
Convert molarity of NaOH to $\left[\mathrm{OH}^{-}\right]$using the molar ratio from the balanced equation.

0.11 mol NaOH	$1 \mathrm{~mol} \mathrm{OH}^{-}$	$=0.11 \mathrm{M} \mathrm{OH}^{-}$
1 L	$1 \mathrm{~mol} \mathrm{NaOH}^{2}$	

Correct answer: $\left[\mathrm{OH}^{-}\right]=0.11 \mathrm{M}$
6. NaCl and LiCl were dissolved in a solution, and the final $\left[\mathrm{Cl}^{-}\right]$is 0.15 M . If the original $[\mathrm{NaCl}]$ was 0.10 M , what was the original concentration of LiCl?

Step 1:

Write out balanced equations for both processes.
$\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{LiCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathbf{O}(\mathbf{I})} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Step 2:
Calculate $\left[\mathrm{Cl}^{-}\right]$from the NaCl using the original molarity of the NaCl solution.

0.10 mol NaCl	$1 \mathrm{~mol} \mathrm{Cl}^{-}$	$=0.10 \mathrm{M} \mathrm{Cl}^{-}$
1 L	1 mol NaCl	

Step 3:
Since we know the final concentration of Cl^{-}and the amount of Cl^{-}that came from NaCl , we can determine how much of the Cl^{-}came from LiCl by just subtracting these two numbers.
$0.15 \mathrm{M}-0.10 \mathrm{M}=0.05 \mathrm{M} \mathrm{Cl}^{-}$

Step 4:
Calculate the molarity of LiCl by using the molarity of Cl^{-}.

0.05 mold $^{-}$	$1 \mathrm{~mol} \mathrm{LiCl}^{2}$	$=0.05 \mathrm{M} \mathrm{LiCl}$
1 L	$1 \mathrm{molCl}^{-}$	

Correct answer: 0.05 M LiCl

7. How many moles of strontium chloride were used to create a 0.15 L solution where $\left[\mathrm{Cl}^{-}\right]=$ 0.88 M ?

Step 1:
The balanced equation is:
$\mathrm{SrCl}_{2}(\mathrm{~s}) \xrightarrow{\mathbf{H}_{\mathbf{2}} \mathrm{O}(\mathrm{I})} \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$

Step 2:

0.88 molCl $^{-}$	$1 \mathrm{~mol} \mathrm{SrCl}_{2}$	$=0.44 \mathrm{M} \mathrm{SrCl}_{2}$
1 L	$2 \mathrm{molCl}^{-}$	

Step 3:
$0.44 \mathrm{M} \mathrm{SrCl}_{2}=\frac{\text { moles } \mathrm{SrCl}_{2}}{0.15 \mathrm{~L}}=0.066$ moles SrCl_{2}

Correct answer: 0.066 moles SrCl_{2}

8. A chemist wants a final solution of $0.16 \mathrm{M}[\mathrm{Br}-]$ with a volume of 0.150 L created from a 0.55 M LiBr solution. What volume of the original solution should be diluted to obtain this concentration?

Step 1:

Write the balanced equation for this process:
$\mathrm{LiBr}(\mathrm{s}) \xrightarrow{\mathbf{H}_{2} \mathbf{O}(\mathbf{I})} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$

Step 2:

Calculate the moles of LiBr in the final solution. Since moles don't change during a dilution, this is also the moles of LiBr in the original solution.

0.16 molBr	0.150 t	1 mol LiBr	$=0.024 \mathrm{~mol} \mathrm{LiBr}$
1 t		1 molBr	

Step 3:
Calculate the volume using the calculated moles of LiBr and the molarity of the original solution (0.55 M).
$0.55 \mathrm{M}=\frac{0.024 \mathrm{~mol} \mathrm{LiBr}}{\text { volume }}$
Volume $=0.044$ L solution

Correct answer: 0.044 L original LiBr solution.
9. Challenge: What is the total ion concentration in a solution created by dissolving 0.55 g LiNO_{3} in 1.5 L water?

Step 1:

Write the balanced equation for this process.
$\mathrm{LiNO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathbf{l})} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

Step 2:
Calculate the number of moles LiNO_{3} in 0.55 g

$0.55 \mathrm{gLiNO}_{3}$	$1 \mathrm{~mol} \mathrm{LiNO}_{3}$	$=0.0080 \mathrm{~mol} \mathrm{LiNO}_{3}$
	$68.946 \mathrm{gLiNO}_{3}$	

Step 3:
Calculate the molarity of the solution.
Molarity $=\frac{0.0080 \mathrm{~mol} \mathrm{LiNO}_{3}}{1.5 \mathrm{~L}}=0.0053 \mathrm{M} \mathrm{LiNO}_{3}$

Step 4:
Use the molar ratio to calculate the concentration of the individual ions in solution.

$0.0053 \mathrm{molLiNO}_{3}$	$1 \mathrm{~mol} \mathrm{Li}^{+}$	$=0.0053 \mathrm{M} \mathrm{Li}^{+}$
1 L	$1 \mathrm{molLiNO}_{3}$	
$0.0053 \mathrm{molLiNO}_{3}$	$1 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-}$	$=0.0053 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$
1 L	$1 \mathrm{moliNO}_{3}$	

Step 5:

Add [$\mathrm{Li}+]$ and $\left[\mathrm{NO}_{3}-\right]$ to get the total ion concentration.
Total ion concentration $=0.0053 \mathrm{M}+0.0053 \mathrm{M}=0.0106 \mathrm{M}$

Correct answer: 0.0106 M

