Chemistry 1 Volume 3

Worksheet 2

Calculating Ion Concentrations in Solutions

1. What is the concentration of lithium ions in a 1.45 M solution of Li_3PO_4 ?

2. What is the concentration of NO_3^- in a 0.65 M solution of barium nitrate?

3. When CaCl₂ is dissolved in water, the resulting concentration of Cl⁻ is 0.15 M. What was the concentration of the original solution?

4. 1.00 L of a 0.25 M solution of $CdCl_2$ was mixed with 1.00 L of a 0.10 M solution of LiCl. What is the concentration of cadmium, lithium, and chlorine ions in the mixed solution?

5. A solution was obtained by dissolving 1.1 g NaCl and 0.25 g MgCl₂ in 0.50 L of water. What is the concentration of Cl^{-} in the final solution?

6. What is [OH-] when 0.66 g NaOH is dissolved in 150 mL water?

7. NaCl and LiCl were dissolved in a solution, and the final [Cl⁻] is 0.15 M. If the original [NaCl] was 0.10 M, what was the original concentration of LiCl?

8. How many moles of strontium chloride were used to create a 0.15 L solution where [Cl⁻] = 0.88 M?

 A chemist wants a final solution of 0.16 M [Br⁻] with a volume of 0.150 L created from a 0.55 M LiBr solution. What volume of the original solution should be diluted to obtain this concentration? 10. **Challenge:** What is the total ion concentration in a solution created by dissolving 0.55 g $LiNO_3$ in 1.5 L water?

Answer Key

1. What is the concentration of lithium ions in a 1.45 M solution of Li_3PO_4 ?

Step 1:

Write the balanced equation for the dissolution:

$$Li_{3}PO_{4}$$
 (s) $\xrightarrow{H_{2}O(I)}$ 3 Li^{+} (aq) + PO_{4}^{3-} (aq)

Step 2:

For every 1 mole of Li_3PO_4 , 3 moles of Li+ are formed. Use this as the conversion factor to calculate the Li^+ concentration from the original solution molarity.

1.45 mol Li₃PO ₄	3 mol Li⁺	= 4.35 M Li ⁺
1 L	1 mol Li₃PO ₄	

Correct answer: 4.35 M Li⁺

2. What is the concentration of NO^{3-} in a 0.65 M solution of barium nitrate?

Step 1:

Write the balanced equation for this process:

$$Ba(NO_3)_2$$
 (s) $\xrightarrow{H_2O(I)} Ba^{2+}$ (aq) + 2 NO_3^- (aq)

Step 2:

Convert moles of $Ba(NO_3)_2$ into moles of NO_3^- using the conversion factor of 1 mole of $Ba(NO_3)_2$ for every 2 moles NO_3^- .

 $\begin{array}{c|c} 0.65 \text{ mol Ba(NO_3)_2} & 2 \text{ mol NO_3}^- & = 1.3 \text{ M NO_3}^- \\ \hline 1 \text{ L} & 1 \text{ mol Ba(NO_3)_2} \end{array}$

Correct answer: 1.3 M NO₃-

3. When CaCl₂ is dissolved in water, the resulting concentration of Cl⁻ is 0.15 M. What was the concentration of the original solution?

Step 1: Write a balanced equation for this process:

CaCl₂ (s) $\xrightarrow{H_2O(I)}$ Ca²⁺ (aq) + 2 Cl⁻ (aq)

Step 2:

Convert [Cl-] to [CaCl₂] using the molar ratio from the equation above.

 0.15 mol Cl⁻
 1 mol CaCl₂
 = 0.075 M CaCl₂ solution

 1 L
 2 mol Cl⁻

Correct answer: 0.075 M CaCl₂ solution

11. 1.00 L of a 0.25 M solution of $CdCl_2$ was mixed with 1.00 L of a 0.10 M solution of LiCl. What is the concentration of cadmium, lithium, and chlorine ions in the mixed solution?

Step 1:

Write the balanced equations for the dissolution of each of the ionic compounds.

$$CdCl_{2} (s) \xrightarrow{H_{2}O(l)} Cd^{2+} (aq) + 2 Cl^{-} (aq)$$

LiCl (s)
$$\xrightarrow{\mathbf{H}_2 \mathbf{O}(\mathbf{i})}$$
 Li⁺ (aq) + Cl⁻ (aq)

Step 2:

Use the molar ratio of the original ionic compounds to ions to calculate the concentration of the individual ions in their starting solution.

 CdCl₂:

 0.25 mol CdCl₂
 1 mol Cd²⁺
 = 0.25 M Cd²⁺

 1 L
 1 mol CdCl₂

 0.25 mol CdCl₂
 2 mol Cl⁻
 = 0.50 M Cl⁻

 1 L
 1 mol CdCl₂

 LiCl:
 1 mol CdCl₂

0.10 mol LiCl	1 mol Li⁺	= 0.10 M Li ⁺
1 L	1 mol LiCl	
0.10 mol LiCl	1 mol Cl ⁻	= 0.10 M Cl ⁻
1 L	1 mol LiCl	

Since you have 1.00 L of each solution, the concentration of ions is also the number of moles of each ion:

0.25 M Cd²⁺ = 0.25 mol Cd²⁺ 0.050 M Cl⁻ = 0.050 mol Cl⁻ 0.10 M Li⁺ = 0.10 mol Li⁺ 0.10 M Cl⁻ = 0.10 mol Cl⁻

Step 3:

Since there are two sources of Cl⁻, add these together to get the total moles of Cl⁻.

Cl⁻ = 0.10 mol + 0.50 mol = 0.60 mol Cl⁻

Step 4:

Divide each value of moles by the volume of the new solution (2.00 L).

$$[Cl-] = \frac{0.60 \text{ mol}}{2.00 \text{ L}} = 0.30 \text{ M}$$
$$[Cd^{2+}] = \frac{0.25 \text{ mol}}{2.00 \text{ L}} = 0.13 \text{ M}$$
$$0.10 \text{ mol}$$

$$[\text{Li}^+] = \frac{0.10 \text{ mor}}{2.00 \text{ L}} = 0.050 \text{ M}$$

Correct answers: [Cl⁻] = 0.30 M; [Cd²⁺] = 0.13 M; [Li⁺] = 0.050 M

4. A solution was obtained by dissolving 1.1 g NaCl and 0.25 g MgCl₂ in 0.50 L of water. What is the concentration of Cl⁻ in the final solution?

Step 1:

Write balanced equations for the processes:

NaCl (s)
$$\xrightarrow{H_2O(I)}$$
 Na⁺ (aq) + Cl⁻ (aq)

$$MgCl_{2} (s) \xrightarrow{H_{2}O(l)} Mg^{2+} (aq) + 2 Cl^{-} (aq)$$

Step 2:

Use the masses and the molar masses of NaCl and MgCl₂ to calculate moles of each and use the molar ratio

 1.1 g NaCl
 1 mol NaCl
 = 0.019 mol NaCl

 58.44 g NaCl
 58.44 g NaCl
 58.44 g NaCl

0.25 g MgCl₂ 1 mol MgCl₂ = 0.0026 mol MgCl₂ 95.211 g MgCl₂

Step 3:

Calculate the molarity of the original solutions.

Molarity = $\frac{0.019 \ mol \ NaCl}{0.50 \ L}$ = 0.038 M NaCl

Molarity = $\frac{0.0026 \ mol \ MgCl_2}{0.50 \ L}$ = 0.0052 M MgCl₂

Step 4:

Use the molar ratio from the balanced equations to calculate [Cl⁻] from each salt.

0.038 mol NaCl	1 mol Cl ⁻	= 0.038 M Cl⁻	
1 L	1 mol NaCl		
0.0052 mal Mach	2 mal Cl-		
0.0052 moi Nigel;			
1 L	1 mol MgCl ₂		

Add these two values together to get the total [Cl⁻] in the final solution.

Correct answer: [Cl⁻] = 0.048 M

5. What is [OH⁻] when 0.66 g NaOH is dissolved in 150 mL water?

Step 1:

The balanced equation for this process is:

NaOH (s) $\xrightarrow{H_2O(l)}$ Na⁺ (aq) + OH⁻ (aq)

Step 2:

Calculate the moles of NaOH using the molar mass of NaOH (39.99 g/mol).

0.66 g-NaOH 1 mol NaOH = 0.017 mol NaOH 39.99 g NaOH

Step 3:

Convert 150 mL to L and calculate the molarity of NaOH.

 150 mL
 1 L
 = 0.15 L

 1,000 mL
 1,000 mL

Molarity = $\frac{0.017 \ mol \ NaOH}{0.15 \ L}$ = 0.11 M

Step 4:

Convert molarity of NaOH to [OH⁻] using the molar ratio from the balanced equation.

0.11 mol NaOH	1 mol OH ⁻	= 0.11 M OH ⁻
1 L	1 mol NaOH	

Correct answer: [OH⁻] = 0.11 M

6. NaCl and LiCl were dissolved in a solution, and the final [Cl⁻] is 0.15 M. If the original [NaCl] was 0.10 M, what was the original concentration of LiCl?

Step 1:

Write out balanced equations for both processes.

NaCl (s)
$$\xrightarrow{H_2O(l)}$$
 Na⁺ (aq) + Cl⁻ (aq)

LiCl (s)
$$\xrightarrow{H_2O(I)}$$
 Li⁺ (aq) + Cl⁻ (aq)

Step 2:

Calculate [Cl⁻] from the NaCl using the original molarity of the NaCl solution.

0.10 mol NaCl	1 mol Cl ⁻	= 0.10 M Cl ⁻
1 L	1 mol NaCl	

Step 3:

Since we know the final concentration of Cl⁻ and the amount of Cl⁻ that came from NaCl, we can determine how much of the Cl⁻ came from LiCl by just subtracting these two numbers.

 $0.15 \text{ M} - 0.10 \text{ M} = 0.05 \text{ M} \text{ Cl}^{-}$

Step 4:

Calculate the molarity of LiCl by using the molarity of Cl⁻.

0.05 mol Cl⁻	1 mol LiCl	= 0.05 M LiCl
1 L	1 mol Cl⁻	

Correct answer: 0.05 M LiCl

How many moles of strontium chloride were used to create a 0.15 L solution where [Cl⁻] = 0.88 M?

Step 1:

The balanced equation is:

$$SrCl_2$$
 (s) $\xrightarrow{H_2O(l)}$ Sr^{2+} (aq) + 2 Cl^- (aq)

Step 2:

0.88 mol Cl⁻	1 mol SrCl ₂	= 0.44 M SrCl ₂
1 L	2 mol Cl⁻	

Step 3:

0.44 M SrCl₂ = $\frac{moles SrCl_2}{0.15 L}$ = 0.066 moles SrCl₂

Correct answer: 0.066 moles SrCl₂

8. A chemist wants a final solution of 0.16 M [Br-] with a volume of 0.150 L created from a 0.55 M LiBr solution. What volume of the original solution should be diluted to obtain this concentration?

Step 1: Write the balanced equation for this process:

LiBr (s) $\xrightarrow{H_2O(l)}$ Li⁺ (aq) + Br⁻ (aq)

Step 2:

Calculate the moles of LiBr in the final solution. Since moles don't change during a dilution, this is also the moles of LiBr in the original solution.

0.16 mol Br-	0.150 L	1 mol LiBr	= 0.024 mol LiBr
1 L		1 mol Br-	

Step 3:

Calculate the volume using the calculated moles of LiBr and the molarity of the original solution (0.55 M).

 $0.55 \text{ M} = \frac{0.024 \text{ mol LiBr}}{\text{volume}}$

Volume = 0.044 L solution

Correct answer: 0.044 L original LiBr solution.

9. **Challenge:** What is the total ion concentration in a solution created by dissolving 0.55 g LiNO₃ in 1.5 L water?

Step 1: Write the balanced equation for this process. LiNO₃ (s) $\xrightarrow{H_2O(I)}$ Li⁺ (aq) + NO₃⁻ (aq)

Step 2:Calculate the number of moles LiNO3 in 0.55 g 0.55 g-LiNO_2 1 mol LiNO3 68.946 g-LiNO_3

Step 3: Calculate the molarity of the solution.

Molarity = $\frac{0.0080 \text{ mol LiNO}_3}{1.5 \text{ L}}$ = 0.0053 M LiNO₃

Step 4:

Use the molar ratio to calculate the concentration of the individual ions in solution.

0.0053 mol LiNO 3	1 mol Li ⁺	= 0.0053 M Li ⁺
1 L	1 mol LiNO ₃	
0.0053 mol LiNO₃	1 mol NO ₃ -	= 0.0053 M NO ₃ ⁻
1 L	1 mol LiNO₃	

Step 5:

Add [Li+] and [NO₃-] to get the total ion concentration.

Total ion concentration = 0.0053 M + 0.0053 M = 0.0106 M

Correct answer: 0.0106 M