Chemistry 1 Volume 5

Worksheet 19
Dalton's Law of Partial Pressures - Part 2

1. A mixture of $4.5 \% \mathrm{H}_{2}, 76 \% \mathrm{O}_{2}$, and $19.5 \% \mathrm{~N}_{2}$ has a total pressure of 2.3 atm. What is the partial pressure of each of the gases?
2. A 2.5 L sample at 273 K contains $0.006 \mathrm{~mol} \mathrm{H}_{2}, 0.0024 \mathrm{~mol} \mathrm{O}_{2}$, and $0.0002 \mathrm{~mol} \mathrm{CH}_{4}$. What is the partial pressure of O_{2} ?
3. A 1.5 L sample at 298 K contains $0.030 \mathrm{~mol}_{2}$ and $0.0020 \mathrm{~mol} \mathrm{O}_{2}$. If the total pressure of the system is 0.52 atm , what is the partial pressure of the two gases?
4. A 500.0 mL sample of gases is at 307 K and contains N_{2} at a pressure of 1.4 atm and O_{2} at a pressure of 0.24 atm . What is the mole fraction of each of the two gases?
5. If a mixture of Ne and Ar has a total pressure of 1.5 atm at 296 K in a 0.5 L container, what is the partial pressure of Ne if Ar is present in a mole fraction of 0.34 ?
6. A mixture of H_{2} and NH_{3} has a total pressure of 1.02 atm at 273 K in a 0.75 L container. If H_{2} is present in a mole fraction of 0.21 , how many moles of NH_{3} are present?
7. A mixture of unknown gases, A and B have partial pressure of $P_{A}=0.35$ atm and $P_{B}=0.45$ atm. If the gas mixture is at 256 K in a 1.1 L container how many moles of gas are present?
8. At 304 K , a 5.6 L container with H_{2} and N_{2} has a total pressure of 1.55 atm. If there are 0.034 moles of H_{2}, what is the partial pressure of N_{2} ?

Answer Key

1. A mixture of $4.5 \% \mathrm{H}_{2}, 76 \% \mathrm{O}_{2}$, and $19.5 \% \mathrm{~N}_{2}$ has a total pressure of 2.3 atm. What is the partial pressure of each of the gases?

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{H}_{2}}=(0.045)(2.3 \mathrm{~atm})=0.10 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{O}_{2}}=(0.76)(2.3 \mathrm{~atm})=1.75 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{N}_{2}}=(0.195)(2.3 \mathrm{~atm})=0.45 \mathrm{~atm}
\end{aligned}
$$

Check your answer by adding the individual gases:
$0.10 \mathrm{~atm}+1.75 \mathrm{~atm}+0.45 \mathrm{~atm}=2.30 \mathrm{~atm}$.

Since the answer matches original total pressure of 2.3 atm, the answer is correct.

Correct answer: $\mathrm{P}_{\mathrm{H}_{2}}=0.10 \mathrm{~atm} ; \mathrm{P}_{\mathrm{O}_{2}}=1.75 \mathrm{~atm} ; \mathrm{P}_{\mathrm{N}_{2}}=0.45 \mathrm{~atm}$

2. A 2.5 L sample at 273 K contains $0.006 \mathrm{~mol} \mathrm{H}_{2}, 0.0024 \mathrm{~mol} \mathrm{O}_{2}$, and $0.0002 \mathrm{~mol} \mathrm{CH}_{4}$. What is the partial pressure of O_{2} ?

Each of the gases in a mixture obeys the Ideal Gas law individually.

Thus:
$\mathrm{P}_{\mathrm{O}_{2}} \mathrm{~V}=\mathrm{n}_{\mathrm{O}_{2}} \mathrm{RT}$
$\mathrm{P}_{\mathrm{O}_{2}}(2.5 \mathrm{~L})=(0.0024 \mathrm{~mol})(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(273 \mathrm{~K})$
$\mathrm{P}_{\mathrm{O}_{2}}=0.022 \mathrm{~atm}$

Correct answer: 0.022 atm
3. A 1.5 L sample at 298 K contains $0.030 \mathrm{~mol}_{2}$ and $0.0020 \mathrm{~mol} \mathrm{O}_{2}$. If the total pressure of the system is 0.52 atm , what is the partial pressure of the two gases?

There are two methods to solve this problem.

Method 1: Use mole fractions

Step 1:
Calculate the mol fraction of each of the gases.
$x_{N_{2}}=\frac{n_{N_{2}}}{\left(n_{N_{2}}+n_{O_{2}}\right)}$
$x_{N_{2}}=\frac{0.030 \mathrm{~mol}}{(0.030 \mathrm{~mol}+0.0020 \mathrm{~mol})}$
$x_{N_{2}}=0.94$
$x_{O_{2}}=1.00-0.94=0.06$

Step 2:
Multiply the mole fraction by the total pressure.
$\mathrm{P}_{\mathrm{N}_{2}}=(0.94)(0.52 \mathrm{~atm})=0.49 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{O}_{2}}=(0.06)(0.52 \mathrm{~atm})=0.03 \mathrm{~atm}$

Method 2: Use the Ideal Gas Law

$\mathrm{P}_{\mathrm{N}_{2}}(1.5 \mathrm{~L})=(0.030 \mathrm{~mol})(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(298 \mathrm{~K})$
$\mathrm{P}_{\mathrm{N}_{2}}=0.49 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{O}_{2}}(1.5 \mathrm{~L})=(0.0020 \mathrm{~mol})(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(298 \mathrm{~K})$
$\mathrm{P}_{\mathrm{O}_{2}}=0.03 \mathrm{~atm}$
Each method gives the same answer!

Correct answer: $\mathrm{P}_{\mathrm{N}_{2}}=0.49 \mathrm{~atm} ; \mathrm{P}_{\mathrm{O}_{2}}=0.03 \mathrm{~atm}$
4. A 500.0 mL sample of gases is at 307 K and contains N_{2} at a pressure of 1.4 atm and O_{2} at a pressure of 0.24 atm . What is the mole fraction of each of the two gases?

Step 1:
Calculate the number of moles of each of the two gases using the Ideal Gas Law.

Moles N_{2} :
$\mathrm{P}_{\mathrm{N}_{2}} \mathrm{~V}=\mathrm{n}_{\mathrm{N}_{2}} \mathrm{RT}$
$(1.4 \mathrm{~atm})(0.5000 \mathrm{~L})=\mathrm{n}_{\mathrm{N}_{2}}(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(307 \mathrm{~K})$
$\mathrm{n}_{\mathrm{N}_{2}}=0.028 \mathrm{~mol}$

Moles O_{2} :

$\mathrm{P}_{\mathrm{O}_{2}} \mathrm{~V}=\mathrm{n}_{\mathrm{O}_{2}} \mathrm{RT}$
$(0.24 \mathrm{~atm})(0.5000 \mathrm{~L})=\mathrm{n}_{\mathrm{O}_{2}}(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(307 \mathrm{~K})$
$\mathrm{n}_{\mathrm{O}_{2}}=0.0048 \mathrm{~mol}$

Step 2:

Calculate the mol fraction of each gas using.
$x_{\mathrm{N}_{2}}=\frac{0.028 \mathrm{~mol}}{(0.028 \mathrm{~mol}+0.0048 \mathrm{~mol})}=0.85 \times 100 \%=85 \%$
$x_{\mathrm{O}_{2}}=\frac{0.0048 \mathrm{~mol}}{(0.028 \mathrm{~mol}+0.0048 \mathrm{~mol})}=0.15 \times 100 \%=15 \%$

Check your answer by making sure the percentages add up to 100\%:
$85 \%+15 \%=100 \%$

Correct answer: $x_{\mathrm{N}_{2}}=85 \% ; x_{\mathrm{O}_{2}}=15 \%$
5. If a mixture of Ne and Ar has a total pressure of 1.5 atm at 296 K in a 0.5 L container, what is the partial pressure of Ne if Ar is present in a mole fraction of 0.34 ?

Step 1:
Calculate the mole fraction of Ne :
$\mathrm{X}_{\mathrm{Ne}}=1-\mathrm{X}_{\mathrm{Ar}}$
$\mathrm{X}_{\mathrm{Ne}}=1-0.34$
$\mathrm{x}_{\mathrm{Ne}}=0.66$

Step 2:
Use Dalton's Law of Partial Pressures to calculate the partial pressure of Ne .
$\mathrm{P}_{\mathrm{Ne}}=\left(\mathrm{P}_{\mathrm{Tot}}\right)\left(\mathrm{X}_{\mathrm{Ne}}\right)$
$\mathrm{P}_{\mathrm{Ne}}=(1.5 \mathrm{~atm})(0.66)$
$\mathrm{P}_{\mathrm{Ne}}=0.99 \mathrm{~atm}$

Correct answer: 0.99 atm
6. A mixture of H_{2} and NH_{3} has a total pressure of 1.02 atm at 273 K in a 0.75 L container. If H_{2} is present in a mole fraction of 0.21 , how many moles of NH_{3} are present?

Step 1:
Calculate the mole fraction of NH_{3}.

$$
\begin{aligned}
& x_{N H_{3}}=1-x_{H_{2}} \\
& x_{N H_{3}}=1-0.21 \\
& x_{N H_{3}}=0.79
\end{aligned}
$$

Step 2:
Calculate the partial pressure of NH_{3}.
$\mathrm{P}_{\mathrm{NH}_{3}}=\left(\mathrm{P}_{\mathrm{Tot}}\right)\left(\mathrm{x}_{\mathrm{NH}_{3}}\right)$
$\mathrm{P}_{\mathrm{NH}_{3}}=(1.02 \mathrm{~atm})(0.79)$
$\mathrm{P}_{\mathrm{NH}_{3}}=0.81 \mathrm{~atm}$

Step 3:
Use the Ideal Gas Law to calculate the number of moles NH_{3}.
$\mathrm{P}_{\mathrm{NH}_{3}} \mathrm{~V}=\mathrm{n}_{\mathrm{NH}_{3}} \mathrm{RT}$
$(0.81 \mathrm{~atm})(0.75 \mathrm{~L})=\mathrm{n}_{\mathrm{NH}_{3}}(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(273 \mathrm{~K})$
$\mathrm{n}_{\mathrm{NH}_{3}}=0.027 \mathrm{~mol} \mathrm{NH}_{3}$
Correct answer: $\mathbf{0 . 0 2 7} \mathrm{mol} \mathrm{NH}_{3}$
7. A mixture of unknown gases, A and B have partial pressure of $P_{A}=0.35$ atm and $P_{B}=0.45$ atm. If the gas mixture is at 256 K in a 1.1 L container how many moles of gas are present?

Step 1:
Determine the total pressure of the mixture by adding the partial pressures.

$$
\begin{aligned}
& P_{\text {Tot }}=P_{A}+P_{B} \\
& P_{\text {Tot }}=0.35 \mathrm{~atm}+0.45 \mathrm{~atm} \\
& P_{\text {Tot }}=0.80 \mathrm{~atm}
\end{aligned}
$$

Step 2:
Use the Ideal Gas Law to calculate the number of moles present.
$P V=n R T$
$(0.80 \mathrm{~atm})(1.1 \mathrm{~L})=\mathrm{n}(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(256 \mathrm{~K})$
$\mathrm{n}=0.042 \mathrm{~mol}$

Correct answer: 0.042 mol of total gas
8. At 304 K , a 5.6 L container with H_{2} and N_{2} has a total pressure of 1.55 atm. If there are 0.034 moles of H_{2}, what is the partial pressure of N_{2} ?

Step 1:
Calculate the partial pressure of H_{2}.
$\mathrm{P}_{\mathrm{H}_{2}} \mathrm{~V}=\mathrm{n}_{\mathrm{H}_{2}} \mathrm{RT}$
$\mathrm{P}_{\mathrm{H}_{2}}(5.6 \mathrm{~L})=(0.034 \mathrm{~mol})(0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(304 \mathrm{~K})$
$\mathrm{P}_{\mathrm{H}_{2}}=0.15 \mathrm{~atm}$

Step 2:
Calculate the partial pressure of N_{2}.
$\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{P}_{\text {Tot }}-\mathrm{P}_{\mathrm{H}_{2}}$
$\mathrm{P}_{\mathrm{N}_{2}}=1.55 \mathrm{~atm}-0.15 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{N}_{2}}=1.4 \mathrm{~atm}$

Correct answer: 1.4 atm

